Entry: Price to Orbit II... revision Monday, August 02, 2004



Lt.Col. John R. London III wrote for the USAF the book length study of space costs and space cost reduction, LEO On the Cheap, which is available for free from here:

LEO On the Cheap

The author released it for general distribution because his message is vitally important - Space costs too much chiefly because it is done at the extreme edge of technical ability, and the launch vehicle and satellite makers like it that way.

Enter Elon Musk who, with the SpaceX team, has taken on board Colonel London's findings and has simplified LEO bound rockets. If SpaceX can reach their goals the price to LEO will drop to ~ $2,200/kg, instead of the ludicrous ~ $40,000 - $10,000/kg currently on offer. And the price to GTO will drop to ~ $4,400/kg or so.

SpaceX

SpaceX is offering 4,200 kg payloads to LEO delivered for ~ $12 million. That's $2,860/kg, but they'll get better at it after a few launches and the price should come down. The main point about their efforts is that the rockets and avionics might not be absolute marvels of engineering perfection - instead they work well enough. Incredible amounts can be spent pushing machinery and designs to their absolute limits because of the continual review and refinement process uses large numbers of staff and resources to achieve the incremental approach to such limits.

A common satellite design mistake is to try to fit the satellite into a specific mass - the cost of space launch means people want to use all the mass budget they're alloted. As a result in the final stages $100,000s are spent refining the design. Larger, cheaper launcher payload options would mean a cheaper design process. Bigger satellites, because of ease of design, are also cheaper satellites. A common satellite frame-work that can be adjusted for several roles - rather than needing total redesign each time - would make for cheaper satellites too.

And rocket design? Advanced, computer controlled rockets pushed to their absolute limit, pushing propellants at high pressure into exhaust chambers with complicated and expensive turbo-pumps, and cooling jackets... well it all adds to costs. Exotic alloys for propellant tanks and refined rocket motors that push the envelope are long labours of (very expensive) engineering love - and simpler, proven designs and components could do the job for a lot less money. No commercial rocket these days needs to push the envelope when there is so much prior experience already paid for.

   0 comments

Leave a Comment:

Name


Homepage (optional)


Comments